Search results for "Elliptic functions"

showing 10 items of 13 documents

Indefinite integrals involving the incomplete elliptic integrals of the first and second kinds

2016

ABSTRACTA substantial number of indefinite integrals are presented for the incomplete elliptic integrals of the first and second kinds. The number of new results presented is about three times the total number to be found in the current literature. These integrals were obtained with a Lagrangian method based on the differential equations which these functions obey. All results have been checked numerically with Mathematica. Similar results for the incomplete elliptic integral of the third kind will be presented separately.

Abelian integralCarlson symmetric formQuarter periodApplied Mathematics010102 general mathematicsMathematical analysisTrigonometric integral010103 numerical & computational mathematics01 natural sciencesJacobi elliptic functionsLegendre formSlater integralsElliptic integral0101 mathematicsAnalysisMathematicsIntegral Transforms and Special Functions
researchProduct

Holder continuity of solutions for a class of nonlinear elliptic variational inequalities of high order

2001

Variational inequalityWeight functionClass (set theory)Quarter periodHigher-order equationApplied MathematicsMathematical analysisNonlinear degenerate elliptic equation Higher-order equation Variational inequality Weight function;Hölder conditionNonlinear degenerate elliptic equationJacobi elliptic functionsNonlinear systemWeight functionElliptic partial differential equationVariational inequalityAnalysisMathematics
researchProduct

Indefinite integrals of products of special functions

2016

ABSTRACTA method is given for deriving indefinite integrals involving squares and other products of functions which are solutions of second-order linear differential equations. Several variations of the method are presented, which applies directly to functions which obey homogeneous differential equations. However, functions which obey inhomogeneous equations can be incorporated into the products and examples are given of integrals involving products of Bessel functions combined with Lommel, Anger and Weber functions. Many new integrals are derived for a selection of special functions, including Bessel functions, associated Legendre functions, and elliptic integrals. A number of integrals o…

Applied Mathematics010102 general mathematicsMathematical analysisTrigonometric integral010103 numerical & computational mathematicsParabolic cylinder functionGeneralized hypergeometric function01 natural sciencesAddition theoremJacobi elliptic functionsOrder of integration (calculus)Special functionsSlater integrals0101 mathematicsAnalysisMathematicsIntegral Transforms and Special Functions
researchProduct

The periods of the generalized Jacobian of a complex elliptic curve

2015

Abstract We show that the toroidal Lie group G = ℂ2/Λ, where Λ is the lattice generated by (1, 0), (0, 1) and (τ̂, τ͂), with τ̂ ∉ ℝ, is isomorphic to the generalized Jacobian JL of the complex elliptic curve C with modulus τ̂, defined by any divisor class L ≡ (M) + (N) of C fulfilling M − N = [℘ (τ͂) : ℘´(τ͂) : 1] ∈ C. This follows from an apparently new relation between the Weierstrass sigma and elliptic functions.

Elliptic curve point multiplicationQuarter periodGeneralized JacobianModular elliptic curveJacobian curveMathematical analysisHessian form of an elliptic curveGeometry and TopologyGeneralized Jacobians toroidal Lie groupsSettore MAT/03 - GeometriaTripling-oriented Doche–Icart–Kohel curveMathematicsJacobi elliptic functions
researchProduct

Indefinite integrals involving the Jacobi Zeta and Heuman Lambda functions

2017

ABSTRACTJacobian elliptic functions are used to obtain formulas for deriving indefinite integrals for the Jacobi Zeta function and Heuman's Lambda function. Only sample results are presented, mostly obtained from powers of the twelve Glaisher elliptic functions. However, this sample includes all such integrals in the literature, together with many new integrals. The method used is based on the differential equations obeyed by these functions when the independent variable is the argument u of elliptic function theory. The same method was used recently, in a companion paper, to derive similar integrals for the three canonical incomplete elliptic integrals.

Carlson symmetric formPure mathematicsQuarter periodApplied Mathematics010102 general mathematicsMathematical analysisElliptic functionTrigonometric integral010103 numerical & computational mathematics01 natural sciencesJacobi elliptic functionsLegendre formElliptic rational functionsElliptic integral0101 mathematicsAnalysisMathematicsIntegral Transforms and Special Functions
researchProduct

Indefinite integrals of some special functions from a new method

2015

A substantial number of indefinite integrals of special functions are presented, which have been obtained using a new method presented in a companion paper [Conway JT. A Lagrangian method for deriving new indefinite integrals of special functions. Integral Transforms Spec Funct. 2015; submitted to]. The method was originally derived from the Euler–Lagrange equations but an elementary proof is also presented in [Conway JT. A Lagrangian method for deriving new indefinite integrals of special functions. Integral Transforms Spec Funct. 2015; submitted to]. Sample results are presented here for Bessel functions, Airy functions and hypergeometric functions. More extensive results are given for th…

Order of integration (calculus)AlgebraQuarter periodSpecial functionsApplied MathematicsTrigonometric integralElliptic integralHypergeometric functionLegendre functionAnalysisJacobi elliptic functionsMathematicsIntegral Transforms and Special Functions
researchProduct

Octupolar excitation of ion motion in a Penning trap: A theoretical study

2014

Abstract High-precision Penning-trap mass spectrometry uses the resonant conversion of the magnetron motional mode into the cyclotron motional mode to determine the cyclotron frequency of the ions under investigation. Usually the conversion process is performed by interaction of the ions with external quadrupolar rf-fields. Recently it was found that conversion by means of octupolar rf-fields entails a tremendous increase in mass resolution and is thus of great interest. However, the conversion results depend in an intricate way on the amplitudes and phases of the octupolar rf-field and of the motional modes of the ions. Experimental progress was hampered by the lack of an underlying theory…

Vector operatorChemistryDifferential equationEquations of motionExpectation valueCondensed Matter PhysicsJacobi elliptic functionssymbols.namesakeQuantum electrodynamicsQuantum mechanicssymbolsPhysical and Theoretical ChemistryHamiltonian (quantum mechanics)InstrumentationSpectroscopyExcitationIon cyclotron resonanceInternational Journal of Mass Spectrometry
researchProduct

Indefinite integrals involving the incomplete elliptic integral of the third kind

2016

ABSTRACTA substantial number of new indefinite integrals involving the incomplete elliptic integral of the third kind are presented, together with a few integrals for the other two kinds of incomplete elliptic integral. These have been derived using a Lagrangian method which is based on the differential equations which these functions satisfy. Techniques for obtaining new integrals are discussed, together with transformations of the governing differential equations. Integrals involving products combining elliptic integrals of different kinds are also presented.

Abelian integralCarlson symmetric formQuarter periodApplied MathematicsMultiple integral010102 general mathematicsMathematical analysisTrigonometric integral010103 numerical & computational mathematics01 natural sciencesJacobi elliptic functionsVolume integralLegendre formApplied mathematics0101 mathematicsAnalysisMathematicsIntegral Transforms and Special Functions
researchProduct

On the rigidity theorem for elliptic genera

2018

We give a detailed proof of the rigidity theorem for elliptic gen- era. Using the Lefschetz fixed point formula we carefully analyze the relation between the characteristic power series defining the elliptic genera and the equivariant elliptic genera. We show that equivariant elliptic genera converge to Jacobi functions which are holomorphic. This implies the rigidity of elliptic genera. Our approach can be easily modified to give a proof of the rigidity theorem for the elliptic genera of level N.

Quarter periodPure mathematicsApplied MathematicsGeneral MathematicsMathematical analysisElliptic functionHolomorphic functionMathematics::Geometric TopologyMathematics::Algebraic TopologySupersingular elliptic curveJacobi elliptic functionsHigh Energy Physics::TheoryMathematics::Algebraic GeometryModular elliptic curveElliptic integralSchoof's algorithmMathematics::Symplectic GeometryMathematicsTransactions of the American Mathematical Society
researchProduct

A-superharmonic functions and supersolutions of degenerate elliptic equations

1988

Quarter periodSubharmonic functionNomeGeneral MathematicsMathematical analysisDegenerate energy levelsElliptic functionJacobi elliptic functionsMathematics
researchProduct